
SPECIFYING SELECTION CRITERIA USING C++ EXPRESSION TEMPLATES

C. D. Jones*, Cornell University, Ithaca, NY 14853 USA

Abstract

Generic programming, as exemplified by the C++
standard library, makes use of functions or function
objects (objects that accept function syntax) to specialize
generic algorithms for particular uses. Such separation
improves code reuse without sacrificing efficiency. We
employed this technique in our combinatoric engine,
DChain, in which physicists combine lists of child
particles to form a list of parent hypotheses, e.g.,

d0 = pi.plus() * K.minus();
The selection criteria for the hypothesis is defined in a
function or function object that is passed to the list's
constructor.

However, C++ requires that functions and class
declarations be defined outside the scope of a function.
Therefore physicists are forced to separate the code that
defines the combinatorics from the code that sets the
selection criteria. We will discuss a technique using C++
expression templates to allow users to define function
objects using a mathematical expression directly in their
main function, e.g.,

func = sqrt(beamEnergy*beamEnergy -
vPMag*vPMag) >= 5.1*k_GeV.

Use of such techniques can greatly decrease the coding
'excise' needed to perform an analysis.

INTRODUCTION
One of the hoped for benefits of the transition from

FORTRAN to C++ was the ability to create libraries
allowing physicists to write programs in a more intuitive
and compact form. One such example is the ability to add
four vectors using the ‘+’ operator. However, C++ allows
a library developer to arbitrarily assign meaning to all the
definable operators, allowing one to create a whole new
compact syntax for specialized purposes. One area where
we have applied this technique is our combinatoric
engine, DChain [1].

In DChain, physicists combine lists of child particles to
form a list of parent hypotheses, e.g.,

D0_list = pi_list.plus() * K_list.minus();

The selection criteria for the hypothesis is defined in a
function or function object (an object that accepts
function syntax) that is passed to the list's constructor.
This follows the idiom used by the C++ standard library,
where generic algorithms are specialized by passing them
a function or function object.

However, C++ requires that functions and class
declarations be outside the scope of any function.
Therefore, physicists are forced to separate the code that
defines the combinatorics from the code that sets the

selection criteria. We were able to alleviate this
restriction in most cases by using the C++ expression
template technique to allow users to define unnamed
function objects using a mathematical expression directly
in their main function. A working snippet of code is
shown below:

Var< mass > vMass;
Var< energy > vEnergy;
Var< p_mag > vPMag;
SimpleSelector<Decay> select_D0 =

abs(vMass – kD0Mass) < 100*k_MeV &&
abs(vEnergy – beamEnergy) < 100*k_MeV &&
abs(sqrt(beamEnergy*beamEnergy –

vPMag*vPMag) – kD0Mass) < 10*k_MeV);

DecayList D0_list(select_D0);
D0_list = pi_list.plus() * K_list.minus();

In this example we are trying to find D0s that decay to p+
K- (and the charge conjugate). We require that the D0
candidates have a mass within 100 MeV of the nominal
mass, an energy within 100 MeV of the accelerator’s
beam energy, and have a ‘beam constrained mass’ (mass
calculated using the beam energy instead of the measured
object energy) within 10 MeV of the nominal mass. This
is an extremely compact (and hopefully readable) way of
expressing such an operation.

EXPRESSION TEMPLATES
Expression templates use two of C++’s features:

operator overloading and templates. The idea is to
convert an expression (usually expressed in mathematical
notation) into a new class type that encapsulates the
expression as a graph.

Consider the expression

sqrt(a*a – b*b) >= v.

This can be expressed as the graph seen in Figure 1.

At the bottom of the graph are the variables a, b and v. In
the next level up a and b are combined with themselves
using the binary multiplication operation. The
multiplications are both done first since multiplication has
a higher precedence rank than subtraction. In the next
level, the results of the multiplications are passed to the
binary subtraction operation. In the penultimate level, the
result of the subtraction is passed to the unary square root,
sqrt, method. In the ultimate level, the result of the
square root method, as well as the remaining variable v,

are passed to the binary greater-than-or-equal-to operator
(>=).

 Figure 1: Mathematical expression as a graph

In a standard C++ implementation, the operators *, -,

>= and the method sqrt would be overloaded to take as
arguments the type of the class of the variables a, b, and
v. The operators *, - and the method sqrt would also
return a new instance of that same class (>= would return
a bool). However, passing temporary instances of a class
as intermediate results of the full expression can be costly
(e.g., in the case of a 100 item list). Expression templates
alleviate that problem.

If we were to apply expression templates to our
example, the operators * and – and the method sqrt
would not return an instance of the same class as our
input variables. Instead, they would return a new
templated class where the class represents the specific
operation to be performed while the template arguments
denote upon what the operation should be performed.
This also means that all the operators and methods used in
the expression are templated based on all of their
arguments. In that case, the declaration of our functions
would look like
• template<typename T, typename S>

MultOp<T,S>
operator*(const T&, const S&);

• template<typename T, typename S>
SubOp<T,S>
operator-(const A&, const B&);

• template<typename T>
SqrtOp<T>
sqrt(const T&);

• template<typename T, typename S>
GtEqOp<T,S>
operator>=(const T&, const S&);

The returned objects would hold copies of (or references
to) the variables actually passed to the functions.

Assuming that our variables are of type A, B and V, the
type of the class returned by our expression would be

GtEqOp<
SqrtOp< SubOp<

 MultOp<A,A>,
 MultOp<B,B> > >,

V>
To get the value of the expression, you would call a

method of this class (say operator ()). This method
would call the same named method on its internal copies
of the intermediate variables and would take the results of
those calls and apply its own operation on them, returning
the result of that operation. For example, calling
operator() on our GetEqOp<…> object would cause
SqrtOp<…>::operator() to be called (which would
further descend down the call graph) as well as
v.operator(), and then those two values would be
compared using the standard >= operation.

So how is this an improvement? Let us take the
specific example that our variables are instances of our
own container class Vector (similar to a std::vector),
with all containers having the same length, and our
functions are meant to be applied to each element of the
list. For the standard implementation it would be
necessary to have five loops over the length of the
containers. With expression templates, if the Operation
class’s operator() takes a container index as an argument,
then the entire expression could be done with just one
loop. In fact, if the functions were declared inline, then
an optimizing compiler could reduce the filling of a new
Vector which is defined as

class Vector {
…
 template <typename Node>
 void operator=(const Node& iN) {
 for(int i=0; i<size; ++i){ *this(i) = iN(i);} }

to machine code equivalent to

 for(int i=0; i < size; ++i) {

*this(i)= sqrt(a(i)*a(i) - b(i)*b(i)) >= v(i);}

Technical Caveats
Use of overloaded template operators in the global

namespace is very dangerous. The problem is the C++
rules for choosing an overloaded function in which
templates have a higher priority than argument coercion
(i.e., automatically converting an argument of one type
into a compatible type such as through a non-explicit
constructor that takes one argument). So in our above
example, if operator* was declared in the global
namespace then that function would be used if you
attempted to multiply an int by a float instead of having
the compiler convert the int to a float and then multiply
the two floats. This problem can be avoided by defining
the operators and functions to be overloaded in the same
namespace as the classes to be used as variables in the
expression, in which case C++ can use the Koenig lookup
rule [2]. This rule states that when searching for
overloaded operators or functions, C++ will first look in

the namespace of the arguments to the operator or
function, even if the function has not been explicitly
stated as coming from that namespace (operators have no
way of specifying an explicit namespace).

Sometimes it is not possible for the class used for the
‘variables’ of the expression to have the same interface as
the Operation classes. In that case, a wrapper Operation
class could be used to adapt the variable class to the
necessary interface. To make use of the wrapper
transparent to the user we would need to hide the
conversion by using one of two types of specialization.

The simplest is to use function specialization. For
each possible argument permutation involving one of the
‘variable’ classes, we write a special function to explicitly
create the wrapper class and pass it and any other function
arguments to the non-specialized form of the function.
This works for almost all modern compilers, but the
amount of code one must write grows factorially with the
number of arguments. For instance, for a method taking
two arguments one must write three specialized forms
(one with only the first argument specialized, one with
only the second argument specialized and one with both
specialized).

The more indirect way is to use specialization
techniques from template meta-programming. The idea is
to use a new intermediate class to determine exactly what
class type to use for the return value related to one
particular argument, instead of using the argument itself.
This is done by creating the class

template< typename T> struct MakeWrapper

{ typedef T Return; };
template<> struct MakeWrapper<Var>

{ typedef Wrapper< Var > Return; };

Then, when defining the function’s return value one uses
MakeWrapper<T>::Return in place of the actual type T
of the argument passed to the function. The advantage to
this approach is you only have to write one version of the
function, and if you add a new argument type all you need
to do is create a new MakeWrapper specialization and
all of your functions will handle the new case correctly.
The disadvantage is that this relies on the compiler to
properly handle a complex template instantiation, which
not all modern compilers do.

IMPLEMENTATION
The design of the selection functional classes was

inspired by the wonderful lambda package, which is part
of the boost library [3]. The idea is to use objects to
represent the variables of the expression. When the
expression is actually evaluated, these ‘variable’ objects
return the value they represent. In the case of the lambda
package, the ‘variables’ are placeholders for the argument
list of the function being defined (i.e., they represent the
first, second, or third variable in the argument list). In the
case of DChain’s selection functions there is only one
argument (the item in the list to be evaluated), so the

‘variable’ placeholders represent functions to call on that
argument in order to get the proper value. For example, if
the selection function operates on Decays, one might have
one ‘variable’ object that returns the Decay’s mass and
another object that returns the Decay’s momentum.

The ‘variable’ object is the templated class
DChain::Var. The template argument must be a class
that has an operator() taking the appropriate type and
returning a double (since for now we evaluate the
expression to a double). So if our Decay class inherits
from the class Candidate which has a method mass, we
could use the standard C++ library functional adapter
classes to write a ‘variable’ object that calls mass as

DChain::Var<

const_mem_fun_ref_t<double,Candidate> >
vMass(mem_fun_ref(&Candidate::mass));

Here we say that vMass is a DChain::Var<> using a
functional object to hold a const member function of the
class Candidate, where the member function returns a
double. The constructor for vMass takes an instance of
the functional object that has been told to call the
Candidate::mass method. Such a specification is very
cumbersome to type. So instead, a small specialized
DChain::mass class was created that explicitly calls
Candidate::mass, allowing one to write

DChain::Var< DChain::mass > vMass;

DChain::Var has no methods, it just has a public
variable holding the function to call. DChain::Var’s sole
purpose is to make sure the correct overloaded functions
are used when the compiler evaluates the expression.

Mathematical Operators
The implementation of the overloaded math operations

all follow a common pattern. There are three overloaded
versions: two that have one Var<> argument and one
double argument, with the third taking two Var<>
arguments. One of these functions for addition is below.

template<class F>
Var<Composite<F, binder2nd<plus<double>>>>

operator+(const Var<F >& iVar, double iValue)
{ typedef Composite<F, binder2nd<plus<double>>>
 CompT;

CompT temp(iVar.m_func,
 bind2nd(plus<double>(), iValue));
return Var<CompT >(temp); }

I make heavy use of standard C++ adapters in the

definition of operator+. The return value of operator+
is a Var<> holding a Composite<> object which passes
the results of F::operator() into the operator() method of
the binder2nd<plus<double> > class. The binder2nd
class holds the value iValue and passes that in as the
second argument to plus<double>::operator() while
passing the value given to its own operator() as the first

argument. This all boils down to creating a functional
object that multiplies the result of iVar.operator() with
iValue. Specialized versions of the functions abs and
sqrt are defined in a similar manner.

Comparison Operators
The ultimate goal is to create a selection functional

object that evaluates to true or false. To that end, the
comparison operators (<, <=, >, >=, ==, !=) are templated
functions taking two arguments, one a Var<> and the
other a double or bool (for == and !=). The operators
return an instance of the templated class
VarComparisonMethod<> (VCM<>), where the
template argument is the argument used for the Var<>.
The VCM<> holds the function to apply (from the
Var<>), the comparison operation to perform, and the
double or bool value to compare against.

Compound Comparisons
In the majority of cases, selecting an item (such as a

Track) requires several different comparisons to be made
(e.g., minimum values for Χ2 of fit and magnitude of the
momentum). To that end, the && and || operators are
overloaded to take VCM<>s as arguments and return a
MethodOr<T,S> or MethodAnd<T,S>. The two
template arguments T and S are just the arguments passed
to the && and || operators. This allows the following
compound statement

abs(vMass-5.28)<.1 && vPMag > 1.0

Expressions and Selection Objects
Some selections require more expressive power than a

mathematical expression can give (e.g., looping may be
needed). Those cases are best handled by special purpose
selection objects. However, the less a class does the
easier it is to debug and to reuse. Therefore the && and ||
operators also allow selection objects as arguments, e.g.,

MySelector mySelector;
SimpleSelector<Track> pionSel = mySelector &&

vPMag > 0.2;

This works by having operator && and || automatically
create wrappers for any object that inherits from
DCSelectionFunction<T>. This is done using the
MakeWrapper technique discussed earlier. Detecting
inheritance is done using the technique discussed in [4].

Adapting to DChain
DChain expects its selection object to inherit from the

abstract class DCSelectionFunction<T>. Instances of
selection objects are passed to the list and the list holds a
pointer to that object. Therefore the selection objects
must live at least until they are used by the list to make its
selection. Temporaries on the stack have sufficient
lifetimes for this purpose. However, the type returned by
the comparison expression is extremely complex (because

the expression graph is contained in the template
arguments) and therefore should not be seen by users. So
what type should we use for our temporary that ‘pins’ the
expression object in memory? There are two choices: a
reference or a wrapper.

If the type returned by the comparison expression
inherited from DCSelectionFunction<T>, then we could
use a reference for our temporary, e.g.,

DCSelectionFunction<T>& d0Sel = …;

Unfortunately, this syntax can be confusing to users (i.e.,
“what is that ‘&’ and when should I use it”?) and the
compiler error message generated when the ‘&’ is
missing is not very informative.

The alternative chosen was to use an adapter class
SimpleSelector<T> that inherits from
DCSelectionFunction<T>. In addition, all types
returned from a comparison expression inherit from the
MethodBase<T> class. The constructor for
SimpleSelector<T> takes a MethodBase<T> as an
argument and asks MethodBase to clone itself, so a copy
of that object is placed on the heap. The
SimpleSelector<T> then manages the lifetime of that
clone. Although this method makes use of the
(potentially expensive) operator new, we have found that
our time is still dominated by the actual combinatorics.

CONCLUSION
C++ expression templates are an extremely powerful

tool for creating libraries allowing very expressive syntax
while not precluding optimal runtime performance. Use
of this technique is technically challenging, but I believe
it is well worth the effort if it allows physicists to
succinctly express their selections, thereby decreasing the
time it takes to write their code, while making that code
more understandable.

ACKNOWLEDGEMENTS
This work was supported by the National Science

Foundation.

REFERENCES

[1] S. Patton and C.D. Jones. DCHAIN- combinatorics

and conjugation made easy. In International
Conference on Computing in High-Energy Physics
and Nuclear Physics (CHEP 1998), Chicago, Il,
August 1998.

[2] C++ Standard ISO/IEC 14882 1998(E) section 3.4.2
[3] http://www.boost.org
[4] A. Alexandrescu, “Modern C++ Design” Addison-

Wesley, 2001

